《一元二次不等式的解法》教学设计
TAGS: 一元二次不等式的解法
《一元二次不等式的解法》教学设计
1.创设情景——引入新课。我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,设计了四个层层递进的问题
问题1:解不等式 (x-3)(x+2)<0 -2问题2:解不等式 x2 -x-6 <0问题3: y=x2 -x-6与x轴的交点坐标是多少?
问题4: x2 -x-6=0的根是多少?
第一个问题学生能看出用分类讨论的方法,讨论出x的范围,进而给出答案,将第一个问题中的括号去掉就得到了第二个问题,由第二个问题提出两个问题;1.这个不等式的解是什么?2.能否给这个不等式起个名字?学生能直接给出答案,直接让学生给第二个问题中的不等式起个名字,学生立马给出了答案:一元二次不等式,从而引出一元二次不等式的概念。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。这部分我先给出一个一元二次不等式x2 -x-6 <0,师生共同研究二次函数的图像,并探究这个一元二次不等式的解集。之后就直接给出例题x2 -x-6 <0,并规范解题步骤,
3.启发引导——形成结论。给出3个例题 :
解下列关于 一元二次不等式
一元二次不等式的解法教学设计
总结二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情况应该水到渠成。至此,学生可以感受到,解一元二次不等式只须1.化标准:将不等式化成标准形式(右边为0、最高次的系数为正);
2.计算判别式的值:3.求根:若判别式的值为正或零,则求出相应方程的两根;4.写解集:注意结果要写成集合或者区间的形式4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课本练习,本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.小结——巩固深化。
总结一元二次不等式的解法(1)图象法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax2+bx+c=0的解;②画出对应函数y=ax2+bx+c的图象简图;③由图象得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p 0,则x>q或x
有口诀如下“大于取两边,小于取中间”. 总结失误防范1.当二次项系数为负数时,一般先化为正数再求解,同时不要忘记不等号改变方向,一元二次不等式的解集要用集合表示.2.含参数的一元二次不等式的求解往往要分类讨论,分类标准要明确,表达要有层次,讨论结束后要进行总结。